A Place for Native Warm-season Grasses

Tenth Eastern Native Grass Symposium Evansville, IN August 30, 2016

P. Keyser Center for Native Grasslands Management

Poor Summer Forage =

Reduced pasture quality/prodn Increased weed pressure \geq Toxins (prussic acid, nitrates)? \geq **Reduced hay production** \geq Increased feed costs Reseeding/renovating pastures \geq **Reduced** weaning weights \geq **Reduced calf crops** \geq Selling into saturated markets Rebuilding herds (expensive stock)

Jessamine Co, KY Aug 2008

Standard Performance Analysis

475 herds, TX/NM/OK, 1991 - 2005

Performance by	Тор	2 nd	3rd	Low
Profit Quartile	25%	25%	25%	25%
Wean %	84.2	82.7	79.9	80.1
Wean Wt.	547	528	524	502
Acres per Cow	24.4	23.1	20.4	18.3
Feed Cost	\$141	\$158	\$171	\$203
Cost per c.w.t.	\$61	\$80	\$96	\$149
% ROA	6.6%	2.3%	-2.0%	-7.4%

Courtesy, Dr. Jason Johnson, Texas A&M Extension Ag Econ

Poor Summer Forage Production

Jan 2014 - lowest inventory since 1951!!!

Complementing Cool-season System with Warm-season Grasses =

Improved:

drought resiliency
 calving rates/birth weights
 backgrounding/stocker gains
 heifer development
 purchased feed budgets
 opportunities for stockpiling
 condition of CSG pastures (rest)
 soil health
 enterprise profitability/viability

Jessamine Co, KY Aug 2008

Exceptional Drought Tolerance

65% of 4-year average

2008

2009

Data courtesy Dr. Don Tyler, UTIA; collected at Milan REC

2007

2006

l/ac

Yield

Dry Mattel

10

Exceptional Drought Tolerance Preliminary Data

Deep Roots = Healthy Soil = Green Grass

Low Input

No N for 5 years!

N = 60 lb/ac P & K only test is if "Low" pH > 5.0

Low Input – vs. Bermudagrass

Low Input – vs. Tall Fescue

http://www.uky.edu/Ag/Forage/ForageVarietyTrials2. htm).

	Annual Yield (tons/ ac)		Fertility	Harvests
Species	Range	Average	(lb N/ac)	(no./year)
Big bluestem	2.6 - 6.0	3.9	60	1 - 2
Indiangrass	2.5 - 5.9	4.6	60	1 - 2
Eastern gamagrass	3.1 - 9.6	4.9	60	1 - 2
Switchgrass (Alarno)	2.0 - 11.6	5.0	60	1 2
Tall fescue (KY31)	2.1 - 418	3.1	180	4

Cost of Hay Production

So, NWSG:

- Provide excellent drought tolerance
- Require low inputs
- Enhance soil health (huge root systems = C!)
- Produce inexpensive forage

• But... what about animal performance, do cattle do well on them?

Animal Performance (Steers)

Forage	ADG	AUD	Gain/ac
Switchgrass	1.74	172	435
Big blue/Indian	2.11	121	369

71 – 115 days grazing per year weaned, market steers (600 lb starting weight)

Gains Sustained 90+ Days

	fr. we			the second s
Forage	May	June	July	Aug
Switchgrass	2.83	1.92	1.48	0.75
Big blue/Indian	2.83	2.57	1.76	0.87

-excellent tool for backgrounding/stockering steers, and grass-finished operations

Economics of Grazing Beef Steers

Expected beef yield (lb/acre) and net returns (\$/acre)			
	by grass species and	location	
NWSG†	Beef Yield	Net Returns	
<u>West TN</u>			
SG	229 ^a	\$104 ^a	
BBIG	266 ^a	\$136 ^a	
EG	248 ^a	\$99 ^a	
<u>Middle TN</u>			
SG	436 ^c	\$345 °	
BBIG	370 ^b	\$257 ^b	

[†] BBIG=Big Bluestem and Indiangrass; SG=Switchgrass; EG=Eastern Gamagrass ^{a,b} If letter is the same across treatment and location, then means are not different (p = 0.05).

Lowe et al. 2015. Agronomy Journal 107:1733-1740

Bred Heifer Performance

		Total
Forage	ADG	gain/ac
BB/IG	1.78	203
SG	1.45	180
EG	1.15*	205

Middle Tennessee REC, 2010-2011; 1,050# Holstein heifers East Tennessee REC, 2010-2012; 967# Angus heifers

* Equivalent to 1.35 lb/day, steer basis

Cost of Gain (\$ per lb) for Grazing Heifers

Heifer development =

- most expensive aspect of beef (or dairy) production
- mostly feed cost (75%) for 30+ months w/o any return!

Keyser et al. 2016. Agronomy Journal 108:373-383

Eastern Gamagrass vs. Sudex

No N applied on pastures for 5 years!

End and	ADG	Days	Beef/ac
Gama	1.15	192	205
Sudex	1.63	81	129

Perennials:

-always available
-no decision on whether to plant annual
-or when to plant it
-no annual estab risk
-no prussic acid/nitrates
-more grazing days

So, NWSG:

- Provide excellent drought tolerance
- Require low inputs
- Contribute to soil health
- Produce inexpensive forage
- Produce good animal performance (steers and heifers)Provide advantages over annuals

But... aren't they difficult to manage?

Grazing Management: Intensity

Management Intensive Grazing (1 – 6 hours)

Rotational Grazing (intensive: 1 – 3 days)

Rotational Grazing (simple: 1 – 3 weeks)

Heavy Early Stocking

Continuous Grazing

More

ess

Heavy Early vs. Continuous Stocking

Heavy Early vs. Continuous Stocking

Janagemen

Heavy Early vs. Continuous Stocking

Managemen

Preliminary Animal Performance – Beef

Grazing Strategy	ADG (lb/day)	Steer Days/ac	Beef/ac (lb)
Continuous	2.05	138	283
Heavy Early	2.07	135	275

* O N/ac applied since at least 2011

- 220-250 lb/head over summer season (112 days)

Flexibility: Timing Forage Availability...

Resiliency

No N applied for 6+ years

So, NWSG:

- Provide excellent drought tolerance
- Require low inputs
- Contribute to soil health
- Produce inexpensive forage
- Produce good animal performance (steers and heifers)
- Provide advantages over annuals
- Aren't difficult to manage

• But... are extremely difficult to establish, right?

Establishment

Planted April 20, 2012, 10 PLS lb/ac BB (6)/IG(3)/LB(1) picture taken Sept 28, 2012

Grassland Birds: Severe Declines!!

Improved Cover...

Winter

Summer

NWSG

Fescue

Natural Disturbance in Grasslands

- essential to healthy grasslands
- especially where rainfall is >35"
- fire is important, but grazing may be critical

Rolling Red Plains & Bobwhites

2014 Stony Point Quail Locations

" Ungrazed previous 2 years

Courtesy K. Hedges, Mo Dept. Conservation

Grazed previous year.

Burned 1.5 years earlier

Legend

grazed 2015spburns 2014fallburns

Courtesy K. Hedges, Mo Dept. Conservation

Grazed Quail Cover

Footprint of 377 MM dt of Grass Production

Dry Tons

zero

up to 500 thousand up to 1 million up to 2 million up to 4 million over 4 million

English et al. 2006 (http://www.agpolicy.org/ppap/)

Grassland Birds

Hayed, grazed, seed production, biofuels, and controls KY & TN * no difference in occupancy for EAME, GRSP, NOBO, or RWBL

Grassland Bird Use of NWSG Production Fields, 2009 - 2010

NWSG Production Category

West et al. 2016 JWM in press

Summary and Conclusions

Native grasses, which are drought-tolerant, low input perennials that enhance soil health and provide:
high stocking (1,000 – 2,500 lb/ac)
strong gains (>2.0 lb/day)
very good total production (350 – 450 lb/ac)

Summary and Conclusions

- Native grasses can make important contributions to profitable grazing through:
 - stockering
 - backgrounding calves
 - heifer development
 - providing "drought insurance" for cow-calf operations improved calving rates/weights (toxicosis issues)???

Summary and Conclusions

 Native grasses can be managed with a good deal of flexibility and are resilient to mis-management with some care

 Natives can provide excellent habitat for at-risk wildlife – ESPECIALLY – with proper grazing

Questions?

